Relativistic Hartree-Bogoliubov theory in coordinate space: finite element solution for a nuclear system with spherical symmetry

نویسندگان

  • W. Pöschl
  • D. Vretenar
چکیده

A C++ code for the solution of the relativistic Hartree-Bogoliubov theory in coordinatespace is presented. The theory describes a nucleus as a relativistic system of baryons andmesons. The RHB model is applied in the self-consistent mean-field approximation to thedescription of ground state properties of spherical nuclei. Finite range interactions areincluded to describe pairing correlations and the coupling to particle continuum states.Finite element methods are used in the coordinate space discretization of the coupledsystem of Dirac-Hartree-Bogoliubov integro-differential eigenvalue equations, and Klein-Gordon equations for the meson fields. The bisection method is used in the solution of theresulting generalized algebraic eigenvalue problem, and the biconjugate gradient methodfor the systems of linear and nonlinear algebraic equations, respectively. Work supported by GSI Darmstadt (GSI TM DIT 36-46-4030)E-mail:[email protected] von Humboldt Fellow, on leave of absence from University of Zagreb, Croatia1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relativistic Hartree-Bogoliubov theory with finite range pairing forces in coordinate space: Neutron halo in light nuclei

The Relativistic Hartree Bogoliubov (RHB) model is applied in the self-consistent mean-field approximation to the description of the neutron halo in the mass region above the s-d shell. Pairing correlations and the coupling to particle continuum states are described by finite range twobody forces. Finite element methods are used in the coordinate space discretization of the coupled system of Di...

متن کامل

Proton drip-line nuclei in Relativistic Hartree-Bogoliubov theory

Ground-state properties of spherical even-even nuclei 14 ≤ Z ≤ 28 and N = 18, 20, 22 are described in the framework of Relativistic Hartree Bogoliubov (RHB) theory. The model uses the NL3 effective interaction in the mean-field Lagrangian, and describes pairing correlations by the pairing part of the finite range Gogny interaction D1S. Binding energies, two-proton separation energies, and proto...

متن کامل

O ct 1 99 7 Relativistic Hartree - Bogoliubov description of the neutron drip - line in light nuclei G . A . Lalazissis ,

The Relativistic Hartree Bogoliubov theory is applied in the mean-field approximation to the description of properties of light nuclei with large neutron excess. Pairing correlations and the coupling to particle continuum states are described by finite range two-body forces. Using standard parameter sets for the mean-field Lagrangian and the pairing interaction of Gogny-type, self-consistent so...

متن کامل

Relativistic Hartree-Bogoliubov Approach for Nuclear Matter with Non-Linear Coupling Terms

We investigate the pairing property of nuclear matter with Relativistic Hartree-Bogoliubov(RHB) approach. Recently, the RHB approach has been widely applied to nuclear matter and finite nuclei. We have extended the RHB approach to be able to include non-linear coupling terms of mesons. In this paper we apply it to nuclear matter and observe the effect of non-linear terms on pairing gaps. 21.60....

متن کامل

Cranked Relativistic Hartree-bogoliubov Theory: Superdeformation in the a ∼ 190 Mass Region

A systematic investigation of the yrast superdeformed (SD) rotational bands in even-even nuclei of the A ∼ 190 mass region has been performed within the framework of the cranked relativistic Hartree-Bogoliubov theory. The particle-hole channel of this theory is treated fully relativistically, while a finite range two-body force of Gogny type is used in the particle-particle (pairing) channel. U...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008